### <u>Diagnostic Accuracy of Fractional Flow Reserve</u> from <u>Anatomic Computed TOmographic</u> Angiography: The DeFACTO Study

James K. Min<sup>1</sup>; Jonathon Leipsic<sup>2</sup>; Michael J. Pencina<sup>3</sup>; Daniel S. Berman<sup>1</sup>; Bon-Kwon Koo<sup>4</sup>; Carlos van Mieghem<sup>5</sup>; Andrejs Erglis<sup>6</sup>; Fay Y. Lin<sup>7</sup>; Allison M. Dunning<sup>7</sup>; Patricia Apruzzese<sup>3</sup>; Matthew J. Budoff<sup>8</sup>; Jason H. Cole<sup>9</sup>; Farouc A. Jaffer<sup>10</sup>; Martin B. Leon<sup>11</sup>; Jennifer Malpeso<sup>8</sup>; G.B. John Mancini<sup>12</sup>; Seung-Jung Park<sup>13</sup>, Robert S. Schwartz<sup>14</sup>; Leslee J. Shaw<sup>15</sup>, Laura Mauri<sup>16</sup> on behalf of the DeFACTO Investigators

 <sup>1</sup>Cedars-Sinai Heart Institute, Los Angeles, CA; <sup>2</sup>St. Paul's Hospital, Vancouver, British Columbia; <sup>3</sup>Harvard Clinical Research Institute, Boston, MA; <sup>4</sup>Seoul National University Hospital, Seoul, Korea; <sup>5</sup>Erasmus Medical Center, Rotterdam, Netherlands; <sup>6</sup>Pauls Stradins Clinical University Hospital, Riga, Latvia; <sup>7</sup>Weill Cornell Medical College, New York, NY; <sup>8</sup>Harbor UCLA Medical Center, Los Angeles, CA; <sup>9</sup>Cardiology Associates, Mobile, AL; <sup>10</sup>Massachusetts General Hospital, Harvard Medical School, Boston, MA;
 <sup>11</sup>Columbia University Medical Center, New York, NY; <sup>12</sup>Vancouver General Hospital, Vancouver, British Columbia; <sup>13</sup>Asan Medical Center, Seoul, Korea; <sup>14</sup>Minneapolis Heart Institute, Minneapolis, MN; <sup>15</sup>Emory University School of Medicine, Atlanta, GA; <sup>16</sup>DBrigham and Women's Hospital, Boston, MA

# Disclosures

- Research Support: NHLBI (R01HL115150-01; U01 HL105907-02 [Contract]); QNRF (NPRP 09-370-3-089); GE Healthcare (significant); Philips Healthcare (modest); Vital Images (modest)
- Equity Interest: TC3, MDDX, Cedars-Sinai Medical Center
- Medical Advisory Board: GE Healthcare, Arineta
- Study Funding: This study was funded by HeartFlow, Inc. HeartFlow, Inc. worked with the steering committee for study design and provided blinded FFR<sub>CT</sub> analyses for the study. HeartFlow, Inc. did not have involvement in the statistical data analysis, manuscript preparation, and review or authorization for submission.
- No study investigator had any financial interest related to the study sponsor

# Background

- Coronary CT angiography is a non-invasive test that demonstrates high accuracy to invasive angiography but cannot determine the hemodynamic significance of a coronary lesion<sup>1</sup>
- Fractional flow reserve (FFR) is the gold standard for diagnosis of lesionspecific ischemia<sup>2</sup>, and its use to guide coronary revascularization improves event-free survival and lowers healthcare costs<sup>3,4</sup>
- Computational fluid dynamics is a novel technology that enables calculation of FFR from CT (FFR<sub>CT</sub>), and may represent a non-invasive method for determination of lesion-specific ischemia<sup>5</sup>
- To date, the diagnostic performance of FFR<sub>CT</sub> has not been tested in a large-scale prospective multicenter study

<sup>1</sup>Min et al. J Am Coll Cardiol 2010<sup>;</sup> 55: 957-65; <sup>2</sup>Piljs et al. Cath Cardiovasc Interv 2000; 49: 1-16; <sup>3</sup>Tonino et al. N Engl J Med 2009; 360: 213-24; <sup>4</sup>Berger et al. J Am Coll Cardiol 2005; 46: 438-42; <sup>5</sup>Kim et al. Ann Biomed Eng 2010; 38: 3195-209; <sup>6</sup>Erglis et al. ESC 2010 Scientific Sessions; Abstract 951

# Objective

 The OVERALL OBJECTIVE of the DeFACTO study was to determine the diagnostic performance of FFR<sub>CT</sub> for the detection and exclusion of hemodynamically significant CAD in a prospective multicenter international study.

# **Study Endpoints**

- <u>Primary</u>: Per-patient diagnostic accuracy of FFR<sub>CT</sub> plus CT to determine the presence or absence of at least one hemodynamically significant coronary stenosis, as compared to an invasive FFR reference standard\*
  - Study hypotheses tested at one-sided 0.05 Type I error rate, with null hypothesis to be rejected if lower bound of 95% CI > 0.70
    - 0.70 threshold chosen b/c this represented the mid-point of test accuracy for stress imaging testing<sup>1</sup>, 3-fold higher accuracy than recent large-scale reports of "real world" testing<sup>2</sup>, and higher than the point of concordance of stress imaging testing with invasive FFR
  - Assuming 0.35 rate of CAD, 238 patients (assuming 11% rate of nonevaluable CTs<sup>3</sup>) needed to achieve 95% statistical power
- <u>Secondary</u>:
  - Additional diagnostic performance characteristics (e.g., sensitivity / specificity)
  - Diagnostic performance for lesions of intermediate stenosis severity
  - Per-vessel correlation of  $FFR_{CT}$  value to FFR measured value

<sup>1</sup>Mowatt et al. Health Technol Assess 2004; 30: 1-207; <sup>2</sup>Madder RD et al. J Cardiovasc Comput Tomogr 2011; 5: 165-71; <sup>3</sup>Budoff MJ et al. J Am Coll Cardiol 2008; 52: 1724-32; <sup>3</sup>Melikian N et al. JACC Cardiovasc Interv 2010; 3: 307-14

### Inclusion / Exclusion Criteria

### **Inclusion Criteria:**

- Age <u>></u> 18 years
- Providing written informed consent
- Scheduled to undergo clinically-indicated non-emergent ICA
- <u>></u>64-row CT within 60 days prior to ICA
- No cardiac interventional therapy between CT and ICA

### **Exclusion Criteria (Cardiac-specific):**

- Prior coronary artery bypass surgery
- Prior PCI with suspected in-stent restenosis
- Suspicion of acute coronary syndrome
- Prior myocardial infarction within 40 days of ICA

# **Study Procedures**

All studies (CT, QCA, FFR, FFR<sub>CT</sub>) interpreted in blinded fashion by 4 independent core labs.



- **CT:** Image acquisition / interpretation in accordance with societal guidelines on <u>>64-row CT</u>
- QCA: % diameter stenosis determined in standard fashion using commercially available software
- **FFR:** Standard fashion by commercially available equipment after administration of nitroglycerin and intravenous adenosine at rate of 140 mcg/kg/min through a central vein
  - FFR = (mean distal coronary pressure) / (mean aortic pressure ) during hyperemia
- - FFR: Per protocol, subtotal (99%) or total (100%) occlusions assigned value of 0.50
  - FFR<sub>CT</sub>: Per protocol, subtotal / total occlusions assigned value of 0.50, and vessels with <30% maximal stenosis assigned value of 0.90</li>

<sup>1</sup>Tonino PA et al. N Engl J Med 2009; 360: 213-24

# **Computation of FFR**<sub>CT</sub>



- 1. Image-based Modeling Comprehensive segmentation of coronary arteries and aorta to determine patient-specific coronary geometry
- 2. Heart-Vessel Interactions At aortic and coronary outlets, enforced relationships b/w pressure and flow (e.g., aortic impedence)
- **3.** Segmentation of Left Ventricular Myocardial Mass Relate time-varying coronary resistance (i.e., pulsatile) to intramyocardial pressure
- 4. Calculation of microcirculatory resistance Use of allometric scaling laws to relate patient-specific "form –function relationships (e.g. mass / size of object related to physiology)
- 5. Patient-specific Physiologic Conditions Fluid viscocity (hematocrit), blood pressure
- 6. Modeling of Hyperemia Standard prediction model to "virtually" force complete smooth muscle cell relaxation (arteriolar vasodilatation)
- 7. Calculation of Fluid Dynamic Phenomena Application of universality of fluid dynamics, based upon Conservation of mass and momentum balance (e.g., airflow over jet; water flow in a river, etc.)

# **Computation of FFR**<sub>CT</sub>

#### Patient-Specific Hyperemic Flow and Pressure:

- 1. Numerical method using governing equations
- 2. Obtain solution for velocity and pressure throughout coronary vascular bed
- 3. Simultaneous solution of millions of non-linear partial differential equations
- 4. Repeat process thousands of time intervals within cardiac cycle

#### FFR<sub>CT</sub> does not require:

- Modification to imaging protocols (i.e., prospective /retrospective ECG gating; fast pitch helical; FBP or IR)
- 2. Administration of adenosine
- 3. Additional image acquisition (i.e., no additional radiation)
- Single-point assessment (i.e., FFR<sub>CT</sub> selectable on any point in coronary vascular bed)

 $\mathsf{FFR}_{\mathsf{CT}}$  derived from a typically acquired CT



FFR<sub>CT</sub> = 0.72 (can select any point on model)

### **Patient Enrollment**



- Enrollment occurred between October 2010 October 2011 at 17 centers in 5 countries [Belgium (1), Canada (1), Latvia (1), South Korea (2), United States (12)]
- 33 patients excluded due to non-evaluable CTs as determined by the CT Core Laboratory (n=31), and inability to integrate CT / FFR wire placement as determined by the Integration Core Laboratory (n=20

### **Study Characteristics**

| Variable                                                                | Mean <u>+</u> SD or N (%)          |
|-------------------------------------------------------------------------|------------------------------------|
| Age (years)                                                             | 62.9±8.7                           |
| Prior MI                                                                | 15 (6.0)                           |
| Prior PCI                                                               | 16 (6.3)                           |
| <b>Symptoms</b><br>Stable<br>Worsening<br>Other (e.g., silent ischemia) | 201 (79.7)<br>43 (17.2)<br>8 (3.1) |
| Male gender                                                             | 178 (70.6)                         |
| <b>Race / Ethnicity</b><br>White<br>Asian<br>Other                      | 169 (67.1)<br>78 (31.0)<br>5 (2.0) |
| Diabetes mellitus                                                       | 53 (21.2)                          |
| Hypertension                                                            | 179 (71.2)                         |
| Hyperlipidemia                                                          | 201 (79.8)                         |
| FH of CAD                                                               | 50 (19.9)                          |
| Current smoker                                                          | 44 (17.5)                          |



| Variable                          | Mean <u>+</u> SD or N (%) |
|-----------------------------------|---------------------------|
| Invasive Test Characteristics*    |                           |
| Stenosis <u>&gt;</u> 50%          | 190 (46.5)                |
| Average stenosis (%)              | 46.8±15.7                 |
| FFR <u>&lt;</u> 0.80              | 151 (37.1)                |
| Non-invasive Test^                |                           |
| Stenosis <u>&gt;</u> 50%          | 216 (53.2)                |
| >90% Stenosis                     | 79 (19.5)                 |
| Coronary Calcium (Agatston units) | $381.5 \pm 401.0$         |

\*N=408 vessels from 252 patients; ^N=406 vessels from 252 patients

### **Per-Patient Diagnostic Performance**



### **Discrimination**



• Greater discriminatory power for  $FFR_{CT}$  compared to CT stenosis on perpatient ( $\Delta = 0.13$ ) and per-vessel basis ( $\Delta = 0.06$ )

### Per-Patient Diagnostic Performance for Intermediate Stenoses by CT (30-70%)



### **Case Examples**



CT stenosis of the mid RCA

FFR<sub>CT</sub> of 0.87, indicating no vessel ischemia

ICA stenosis of mid RCA, and FFR of 0.88, indicating no vessel ischemia

# Limitations

- Enrollment criteria disqualified individuals with prior CABG or suspected in-stent restenosis after PCI
- Not every vessel was interrogated in study participants
  - Only vessels deemed clinically-indicated for evaluation
- Unknown whether revascularization of ischemic lesions by FFR<sub>CT</sub> reduces ischemia
  - FFR<sub>CT</sub> algorithms enable calculation after "virtual" revascularization<sup>1</sup>
- Study did not exclusively enroll patients considered anatomically indeterminate by CT (30-70%)<sup>2,3</sup>
  - $FFR_{CT}$  compared favorably to CT stenosis in subset

# Conclusions

- In stable patients with suspected CAD, FFR<sub>cT</sub> demonstrated improved diagnostic accuracy over CT stenosis for diagnosis of both patients and vessels who manifest ischemia
  - Did not satisfy its pre-specified primary endpoint of Dx accuracy
    >70% of lower bound of the one-sided 95% CI
  - High sensitivity and NPV implies low rate of FN
  - Considerable increase in discriminatory power
- In patients with stenoses of intermediate severity by CT—which are the most clinically ambiguous for ischemia determination— FFR<sub>CT</sub> demonstrated higher diagnostic performance compared to CT alone
- Proof of feasibility of FFR<sub>CT</sub> and represent first large-scale prospective demonstration of use of computational models to accurately calculate FFR from typically acquired CT images

# Thank you.