miR-24 and YKL-40 in Abdominal Aortic Aneurysm

Lars Maegdefessel, MD PhD, Uwe Raaz, MD PhD, Joshua M. Spin, MD PhD, Per Eriksson, PhD, Anders Hamsten, MD PhD, Philip S. Tsao, PhD
Abdominal Aortic Aneurysm (AAA)

- Dilation of the infrarenal aorta (> 3.0cm)
- AAAs are common, lethal
 - 5-16% men; 1-2% women ≥ 65y/o
- Associated with atherosclerosis
 - Family History
 - Age
 - Male Sex
 - Hypertension
 - History of Smoking
 - Diabetes (-)
- No effective therapy for early disease
Murine AAA Model: PPE Infusion

AAA Diameters Measured by US

Expansion in mm

Pre 3 7 10 14 21 28

Post-Operative Days

MALE
SALINE
FEMALE
DIABETIC
AGED
NICOTINE
MALE
FEMALE
DIABETIC
SALINE
microRNA Microarray - Mouse (Agilent™)

Diabetes
- 87
- 65
- miR-21
- miR-29b
- miR-23b-24-27b

Nicotine
- 97

Female
- 93

Aged
- 72
- miR-21
- miR-29b
- miR-23b-24-27b
Gene Expression Microarray – Mouse (Agilent™)

988 targets of the miR-23b-24-27b family
miR-23b-24-27b and Targets in PPE-AAA
Regulation of AAA by miR-24/YKL-40

Cytokines

YKL-40

(miR-24)

(phospho)-AKT

Apoptotic effects on macrophages, T-cells, eosinophils

Chi31 Fold Change vs. sham

<table>
<thead>
<tr>
<th></th>
<th>day 7</th>
<th>day 14</th>
<th>day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>#</td>
<td>#</td>
<td>*</td>
</tr>
<tr>
<td>^</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- scr-miR
- anti-24
- pre-24
Modulation of miR-24 in Mouse AAA

sham

PPE + scr-miR

PPE + anti-24

PPE + pre-24

AAD vs. baseline (%)
miR-24 Modulation in AngII-Induced AAA

1000 ng/min/kg of AngII for 28 days
miR-24 Regulation \textit{in vitro}

![Graph showing the regulation of miR-24 under various conditions.](chart.png)
miR and Gene Expression in Human AAA
miR-24 and YKL-40 in Plasma
Pathology of AAA - Therapeutic Opportunities

- Transmural inflammation
- SMC phenotypic changes and apoptosis
- Impaired ECM remodeling
- Loss of elastin layer integrity

→ Progressive luminal expansion

miR-21
miR-29b
miR-24

Sci Transl Med 2012
J Clin Invest 2012
unpublished
Conclusions

• microRNAs regulate gene expression in the aortic wall
 • miR-24 regulates inflammatory activity (and remodeling) during AAA development via YKL-40
 • miR-24 and YKL-40 are differentially regulated in human AAA tissue samples
 • YKL-40 is a novel biomarker of AAA disease severity

• Modulating miR-24 represents a new therapeutic option to control inflammatory processes during AAA development
 • Effect of systemic miR-24 modulation is yet unknown

→ local delivery mechanisms desirable